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ABSTRACT

we first consider a random walk on the nonnegative integers

whose steps are controlled as follows. upon arriving at a location

i , a pair of probabili ties (p,q) is selected from a given set , a

reward r(i ,p,q) is received, and the next step takes the walk to

locations i+l, i—l or i • with respective probabilities p. q and

l—p—q (q=O when i=O). This is repeated indefinitely. A rule for

success ively selecting the probabilities (p,q) is a control policy.

We identify conditions on the rewards and probabilities under which

there exist monotone optimal policies, for discounted and average

rewards, and we show how to compute some of these policies. For

example, in certain settings it is optimal to increase the tendency

of backward movement of the walk as its location increases. We

also present similar results for controllin g the parameters of a

birth and death process and an M
~MI1 queue.~~~

Key Words: Random walk, birth and death process, MINJ1 queue,

Markov decision process, dynamic programming.
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OPTIMAL CONTROL OF RANDOM WALKS • BIRTH AND
DEATH PROCESSES AND QUEUES

by

• Richard Serfozo
Syracuse university

1. Introduction

• This study was motivated by the following queueing control

• problem. Consider a single server queueing system with exponential

interarrival and service times (an M~MIl queue) whose rates are con-

trolled as follows. At each customer arrival or service completion ,

the number of customers in the system is observed. Based on this

number, an arrival and service rate pair (X,ii. ) is selected from a

given set. Costs are incurred for using the rates (X,~i.), and for

holding customers in the system. The problem is to find a policy

for selecting the rates so as~to minimize the (discounted or average)

cost of running the system. It seems reasonable, that the optimal

arrival and service rates should be decreasing and increasing func—

• tions, respectively, of the number of waiting customers. That is,

as the queue increases, there should be faster service and fewer

arrivals in order to reduce the queue. The question is what types

of costs lead to such monotone optimal policies? We address this

problem herein for a more general birth and death process and for

a simple random walk.

We begin by considering a random walk on the nonnegative

integers whose steps are of size +1 , -l or 0 with respective

probabilities p , q , and l-p-q , where the (p,q) is

This research was partially sponsored by the Air Porce Of fice
of Scientific Research Grant #AFOSR—7U-26?7, and by the National
Science Foundation Grant #ENG75-13653. 
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selected at each step depending on the location. In Sections 3—5,

• we present very general conditions under which it is optimal to

increase (or decrease) the -tendency of backward movement of the

walk as its location increases. We do this for discounted and

average rewards over infinite or finite time horizons. In Section

5 we discuss the case where the (p,q) ’s may depend on the location.

Our analysis is based on three results that apply to more general

Markov decision processes. They are (1) a criterion for establishing

the existence of a monotone optimal policy (Proposition 2.1, which

is generalized in Serfozo (1977) and Topkis (1978) ) ,  (2) a sufficient

condition for the upper envelope of a family of concave functions,

defined on the integers, to be concave (Proposition 2.2), and (3) a

result for obtaining a monotone average optimal policy from a set

of monotone discounted optimal policies (Proposition 4.1, an exten-

sion of Theorem 1 in Derman (1962)).

In Section 6 we consider a birth and death process whose birth

and death rates are controlled whenever the process takes a jump.

We show that the optimal policies for this continuous time process

are the same as those for a discrete time random walk as described

above. This follows by an equivalence between continuous and dis—

crete time Markov decision processes (see Lippman (1975) and

Serfozo (1979)), which is an extension of that used by Howard and

Veinott. We then apply our results for random walks to describe

optimal policies for controlling the birth and death process. A

special case is the above MIM J 1 queue with controlled arrival and

_ _  ~~~~~~~~~~~~~~~~~~~~~~~~~ ~~ • • - - - - -~~
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service rates. Similar queueing control models are (1) M IMI1 queue

with controlled service rate [l]—[3] , [10] and [13], (2) M IM J 1 queue

with controlled arrival rate [l0]—[12] , and (3) MIGjl queue with

service switched on or off [5], [81 and [17]. Many other studies

of controlled queues are referenced in [4], [18] and [19].

2. Preliminaries

The following are some basics of controlled Markov chains

(discrete time Markov decision processes), that we shall use• in our

analysis.

Consider a controlled Markov chain that moves in the space of

nonnegative integers as follows. Upon arriving at a location i ,

an action aE (1 ...,mJ is selected, a real—valued reward r(i,a)

is received, and the next state is determined by the transition

probabilities p(i,a,j) for j~~ 0. This is repeated indefinitely.

A policy f for controlling this chain is a mapping from the

state space [O ,l,...J to the action space [l,...,mJ, with the meaning

that action f(i) is selected whenever the chain is in state i.

We shall consider only these so—called stationary deterministic

policies. As pointed out below, nothing is gained by considering

nonstationary history dependent policies.

Each policy f , along with a rule for starting the process,

determines a stochastic process ((xc. an) : n � OJ where X~ is the

state of the chain at time n , and a~~=f(X~) is the action taken.

A policy f* is called or—discounted optimal if

Vf* (i) = suP Vf (i) for all i,
f

_ _ _  _ _ _ _ _  _ _  _ _  •
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where 0 < ~ < 1 is a discount factor and

Vf(i)  = Ef(Z o’
nlr(X n

, a )  x0=i)

We also define V
0( i)  0 ,

Vn (i) = sup E~(E ~Y
kr(X~~~~ ) 1x0=i) for n � 1

and

V(i) = sup V~ ( i )
f

Similar ly, a policy f* is called average optimal if

Sup cP~~(L )  for all i

where

~ (i) u r n  inf n~~~E (

n_l 
r(X,~,a~ ) I X  =i) .

n-~~ k=O

We shall assume that the rewards are bounded from above, or
more generally, that

u r n  SUPE ( E a
kmax(0,r(xk, a )j IX =i) = 0 for each i.

n-’~~ f k=n

Then the above V’s are well-defined and -a�  Vf(~ ) � V ( i )  <~~ for
all i and f ,  see Sch~l (1975). From the theory of dynamic

programming——as developed by Bellman , Blackwell, Derman, Howard,
Strauch and others, and nicely unified and extended by Hinderer

(1970) and Schäl ( l9 7 5)— — we have the following results.
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Existence_of Stationary Discounted_Optimal_Policies. Within the

class of all history dependent policies , there is a stationary

a—discounted optimal policy.

Optimality Criterion. A policy f is a—discounted optimal if and

only if

U(i,f ( i))  = max U(i,a) for all i,
a

where U(i,a)=r(i,a)+QEp (i ,a,j)v(j).
J

Optimality Equations. The V and V satisfy the equationsn

V~ (i) = max[r(i,a)+~~E p(i,a,j)V~~1(j)) for n � l , and
a j

V(i) = max[r(i,a)+~~ E. p(i,a,j)V(j) ) for all i.
a

Value Iteration.

V(i) = u r n  V (i) for all i.
n-*~~

The following results are useful for establishing monotone

optimal policies in dynamic programming models, see Serfozo (1977) and

Topkis (1978). Here we shall consider the general optimization problem H

v(i) = max u(i,a) for i=0,l,...
a

where aE (1,...,mJ and u is a real—valued function. An optimal

policy for this problem is defined to be any mapping f from

(0,l,...J to (l,...,mJ which satisfies

H I
•~~~~~~~~~~~~ -~~~~~ • - -~~~~~~~~
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u(i,f(i)) = max u(i,a) for all i.
a

Note that this is an abstraction of the Optimality Criterion.

Here and throughout this article we use a prime to denote

the difference operator with respect to i~ namely w ’ (i) =w(i+1)—w(i)

In particular we write u’ (i,a) =u(i-i-l,a)—u (i,a) . We also use

increasing and decreasing to mean nondecreasing and nonincreasing,

respectively.

Proposition 2.1. Let f be the optimal policy defined by

f(i) = max (a:u(i,a)=m axu(i,~~)J
a

If u’ (i,a) is increasing (decreasing) in a for each i, then f

is increasing (decreasing).

Proof. Suppose u’ (i,a) is increasing in a , and there is an i

such that f(i+1) <f(i) . By the definition of f(i) and our

suppositions, we have

0~~u(i,f(i))—u (i,f(i+l)) �u(i+l,f(i))—u (i.i-l,f(i-~-l))

and so u(i-i-l,f(i+l))~~ u(i+l,f(i) ) . But this contradicts the

definition of f(i+l) . Thus f must be increasing. A similar

argument applies to the decreasing case.

In order to apply Proposition 2.1 when u(i a) is a function

of v , as in a dynamic program, some knowledge of the structure of

the value function v may be requfred. Since v is the upper

envelope of u(.,l) ,... , u (•,m) , then v is obviously convex,

L - __ •~~~~~~~~ _ •  ______ ~~~~~~~~~~~~~~~~~~ ______ •~~ 
_

~~~~~_•  • 
.
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increasing or decreasing when all of the u(.,a)’s are convex,

increasing or decreasing , respectively. The next result describes

conditions under which v is concave.

proposition 2.2. The function v is concave if either of the fol-

lowing conditions hold.

(1) u’ (i,a) is increasing in a and u’ (i,l) ~ u’ (i+l,m) for all i.

(2) u’ (i,a) is decreasing in a and u’ (i,m) �u ’ (i+l,l) for all i

Proof. Suppose (1) holds and let f be any optimal policy. Then

from (1) we have

v’ (i) = u(i+l,f(i+1)) —u(i,f(i)) �u(i-i-1,f(i)) —u(i,f(i))

~ u’ (i,l) �u ’ (i+1,m) �u(i+2,f(i-i-2)) —u(i-i.-1,f(i+2)) �v ’ (i+l)

Thus v is concave. A similar argument shows that v is concave if

(2) holds.

3. Monotone Discounted Optimal Policies for Random Walks.

In this section we shall consider a controlled random walk

on the nonnegative integers that moves as follows. upon arriving

at a location i, the following events Occur:

(a) A pair of probabilities 
~~~~~~ is selected from the set

~~~~~~~~~~~~~~~~~~~~~ We assume that O�p~~+q~~�i and at

least one of these sums is nonzero.

(b) A real—valued reward r(i,a) is received.

--~~~- --~~~~~ —~~~~~~~~ •-~~~~~~~~~ -~~~~~~~~
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(C) The next location of the walk is determined by the transition

probabilities

p(i,a,i+l)=p~~s p (is as il) q~~. p (is as i)=l_p~
_q
~

when i� l , and

p(O, a,l)=p and p(O,a,O)=].— p .

This series of events is repeated indefinitely.

The following results describe conditions under which this

random walk has increasing or decreasing cs—discounted optimal

policies. Average optimal policies are discussed in the next section.

Theorem 3.1. Suppose the following conditions hold.

(j) 
~a 

is decreasing and is increasing in a , and P~~+q~ �l .

(ii) r ’ (i,a) is nonposit!ve and increasing in a for each i.

(iii) r’ (i,l) �r ’ (i-i-l,m) for each i

Then there is an increasing a—discounted optimal policy for control-

ling the random walk.

Theorem 3.2. Suppose the following conditions hold.

~~ ~a 
is decreasing and is increasing in a.

(ii) r( i,a) is convex and increasing in i for each a.

(iii) r ’ (i,a) is decreasing in a for each i

~ k(iv ) E ~~ maxr(k,a)<x .
k=0 a

Then there is a decreasing cv—discounted optimal policy for control—

ling the random walk.
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The increasing optimal policy in Theorem 3.1 can be written

as

f(i) = a if i �1< 1 +l,

where 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

This means that if the walk

is in location i and 
~a
�
~~
<
~~a+1 I then 

~~~~~~ 
is selected to

determine the next location (if 1a ~a+l’ action a is never

selected). Since 
~a 

is decreasing and is increasing, the f

selects higher q’s and lower p’s as the location increases. This

increases the probability of backward movement of the walk as its

location increases, and so the walk tends to stay near zero.

Theorem 3.2 describes the opposite situation where it is optimal

to decrease the probability of backward movement as the location

increases. This tends to push the walk to ~~~~~, accelerating its

forward movement as it approaches ~~~~~.

It might appear that condition (i) in both theorems could be

replaced by the weaker condition that Pa/cia is decreasing in a.

We feel that this cannot be done, but we do not have a counter—

example to justify this. Note that (i) poses no restriction on

the (p,q) ’s for random walks with a controlled ascent (i.e.

q~~~~ •• =
~~m~ 

or a controlled descent (i.e. p1= 
... =

~~~m~ 
• The

action space [1,...,mJ is assumed to be finite just for simplicity.

It could also be a closed interval with the r and p being Borel

measurable.

In Theorem 3.1 the assumptions (i)—(iii) insure that the value

function V is concave, which i•s a key ingredient for an increasing

_ _
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optimal policy. Note that (ii) and (iii) hold if and only if

(1) 0�r ’(O,m) �r ’ ( 0 ,m—1)�...�r’(O ,l )�r ’(l,m)�r ’(1,m...1)~~~...

This is not too restrictive. It is satisfied when r(i,a) =g(a)—h(i)

where h is convex increasing and g has any structure. This is

equivalent to r ’ (i,a) being nonpositive and independent of a for

each i. Note that (ii) implies that the rewards are bounded from

above; ir~deed

(2) supr(i,a) � maxr(0,a) < ~~~~.

i,a a

Similarly, in Theorem 3.2 the (i)—(iii) insure that V is

convex and that the rewards are bounded from below. Clearly (ii)

and (iii) hold if r(i,a) =g1(a)+g2(i) , where g2 is convex and

increasing. It is also easy to see that (ii) and maxr(i,a) �u(i)
a

where u is a polynomial, imply (iv).

The proof of Theorem 3.1 is based on the following result.

For this we let

(3) = max (a: Un(i,a) =m axU~ (i.~~ H

• whei~e the U~ is given by (recall Section 2)

(4) U~ (i~a) = r(i,a)+cwEp (i,a, j )V~ (j)

— 

r(O ,a)+
~~

[(l_ pa)V ( O ) + p aVn(l)] for i= 0
— 

r (i, a) + ~ [q~V~ (i—1)+ ~~~~~~~~~~~ (i) + ~a~
1n 

(i+l)] for i � 1

The f~ can be viewed as the optimal policy for the first step

in an n—step random walk.

‘I
~~~~~~~~ 

. .
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Proposition 3.3. Under the assumptions of Theorem 3.1, the V (i)
n

is concave decreasing and f~ (i) is increasing in i for each n � 1.

Remark 3.4. Consider an N—step random walk as in Theorem 3.1 with

a reward function r~~(i.a) for the n—th step (instead of ~~~r(i,a))

which satisfies (ii) and (iii) for 1�n�N. Then Proposition 3.3

(with different notation) yields an increasing optimal policy at

each of the N steps. A similar statement holds for decreasing

policies.

Proof. We shall prove this by induction. The assertion is true

• for n = 1 by Propositions 2.1 and 2.2, since V1(i) = max r(i, a)
a

Now assume the assertion is true for n. The n+l—th Optimality

Equation is -

v~~1(i) = max U~ (i.a)

To prove that is decreasing, it suffices , since is

the upper envelope of the functions U~(. , 1), . . . , u~ (• ,m) , to show

(5) U~ (i,a) � 0 for each a and i.

And to prove that V~~1 is concave and is increasing, it

suffices by Propositions 2.1 and 2.2 to show that

(6) U~ (i,a) is increasing in a for each i , and

(7) U1 (i,l) � U~ (i+1,m) for each 1.

j
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To prove (5)—(7), fix an i� l .  From (4) it follows that

(8) %(i,a) = r’(i,a ) + a [q V~ (i—1)+ (l—p —q )v’ (i)+pv’ (i+1)]

= r’(i.a)+ a[v~ (i)_q~v~ (i_l)+pv” (i)]

Under the induction hypothesis, the V~ (i) and V~ (i) = %(i+l)—v~ (i)

are nonpositive. Then from the first and second lines in (8), and

assumptions (i) and (ii), it follows that (5) and (6) hold. The

inequali ty (7) also holds, since (i) and (iii) yield

(9) ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

~ 0.

Similar arguments prove (5)—(7) for i = 0.

We are now ready to establish the existence of an increasing

a—discounted optimal policy.

Proof of Theorem 3.1. Consider the policy

(10) f(i) = max (a: U(i,a) =m axU (i,~~)J

where U(i,a) is given by (4) with the n ’s eliminated. By the

Optimality Criterion, this f is a—discounted optimal.. To complete

the proof it suffices , by Proposition 2.1, to show that U’ (i,a) is
• increasing in a for each i. To this end, note that

rx ’ (O.a)+ a(V’ (O)_q av’(O)+P V”(O)] for i= 0
(11) U’ (i,a)=~ 

a

r’(i,a)+ cr[v’ (i)_qaV”(i_l)+paV” (i)] for i~~l.

____________ ______________________________ 

- if
L - _ _ _ _ _ _ _  - • - • _________________ 

~~~~~~~~~~~~~~~~~~ - ~~~~~
• • •~~~~~• •  ~~~~~~~~ • -— - • • •

~~—
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By Proposition 3.3 and the Value Iteration V = u r n  Vn~ 
it follows

n-.~that V is concave decreasing. Then using (i), (ii), V’ (0) ~ 0

and V” (i)�O in (11) we see that U’(i,a) is increasing in a. 1

Proof of Theorem 3 2 .  From (ii), (iv) and Pf (Xk� i+kIXo=i) =1 we

have

lirn sup Ef( E a
k lr(Xk,ak)IJX O=i) � lim 

~ cykmaxlr(i+k,a)I=0.
n-~~ f k=n ~s~~k n  a

Thus the dynamic programming results in Section 2 hold.

Similar to Proposition 3.3 one can show that each n—period

value function v~(i) is convex and increasing in i and f~ (i) is

decreasing in i. In the induction argument, the V~ is convex

since it is the upper envelope of U~_1 (. , 1) , . . . , U~_~ ( , m) which

are clearly convex.

Now consider the a—discounted optimal policy f as defined

by (10). Arguing as in Theorem 3.1, using the property that

V(i) limV~ (i) is convex increasing, it follows that f is
n-,~

decreasing. I

The next result describes some properties of the increasing

a—discounted policies in Theorem 3.1. A similar result holds for

decreasing policies.

Theorem 3.5. Suppose the random walk satisfies the hypotheses of

Theorem 3.1 and let f(i,a) be the increasing a—discounted optimal

policy defined by (10).

(a) The f(i,a) is increasing in a for each i.
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(b) If there is an a0 and M such that

(12) r ’ (i—1 ,m)� ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

for each i � M , then

(13) f( i,a) = m for each i �M and a � a
0
.

In particular , (13) holds for some a
0 and M if

(14) r(i,a) =g(a)—h(i) and h(i) is strictly convex and increasing.

Remarks. Assertion (a) implies that the set (f(.,a) : 0.ca<l) con-

sists of a finite number of distinct policies. We use this in

Theorem 4.2 to obtain an increasing average optimal policy from this

set. Assertion (13) implies that the search for an optimal policy

from the infini te set of increasing policies can be restricted to

a finite set of increasing policies.

Proof. (a) For this part we shall affix an a to the functions

• defined above to show their dependency on a. Accordingly, we let

f~ (i1 a) be the optimal solution, as in (3) , to the optimization

problem

V~ (i.a) = max U~_1(i~ a.a) for 0<a-<l.

We shall first show by induction on n that f~ (i.a) is increasing

in a and v~ (i,a) is decreasing in a for each i and n. This

is true for n=l , since V (i,a) = maxr(i,a) and f (i,a) are inde—1 a 1
pendent of a . Now suppose it is true for n . Then clearly

- -
~~~~~~~~ 

. . - •~~~ •—-——~~~~ 
a—— ~~~~~~~~
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(r(O,a+l)_r (O,a)+a (pa+1
_P
a)V

~
(O s a) if j 0

(15) ~~~~~~~~~~~~~~~~~~~~~ =1
Lr(i, a+l)—r(i, a)+a[(pa+i

_p
a)V i~

(i,a)

+ ~~~~~~~~~~~~~~~~~~ if i�l ,

and the right side is increasing in a for each i and a. Thus

by Proposition 2.1, with i replaced by a , it follows that

is increasing in a for each i. For a fixed i~~1 and

a ,  we can write

(16) V~~1(i,a) TJ~ (i+l~b1a)—U~ (i1 a~a) =r(i+l,b)—r(i,a )+

+ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

where a=f
~+i

(i,a) and b=f
~+i

(i+l,a) . Since f
~+1

(..a) is

increasing in a , there is a ~ ~‘a such that f~~1(i,~~) = a and

f~~1(i+l,~~)=b. Using O�V ~ (i,a)~~ V~ (i,~~) , and 
~~~~~~~~~~ 

in

(16), it follows that V~~1(i,a) � V~~1(i,~~) . Thus V1~~1(i,a) is

decreasing at a for each a and i � 1. This also follows for

i = 0 , by a similar argument. Hence the induction is complete.

Now consider the policy f(i,a) which is optimal for the

problem

V(i ,a) = max U (i,a,a) 0<a<l.
a

We can write U(i,a+l,cy)—U(i,a,cw ) as in (15) without the n’s. By

the last paragraph and Value Iteration, we know that V1 (i,a) = lim V~ (i,a)
n-.,~is decreasing in a ,  and so U(i,a+l,a) —U(i ,a ,a) is increasing in a

• -~~~~ -

_ _ _ _ _ _ _ _ _ _ _ _ _  _ _ _ _ _ _ _ _ _  
, • •~~~~~~~~~~~

. ,
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for each i and a. Thus by Proposition 2. 1, it follows that

f(i,a) is increasing in a for each i.

• (b) Fix an a ~ a0 and i � M. We also assume i � 1: the proof

is similar for i=0. To prove (13) it suffices to show that

U(i,m) � TJ (i,a) for all a~~m—l ,

where U is defined by (4) without the n’s. we can write

u(i,a) = r(i,a )+ aEp(i ,a ,j)[r (j,f(j,a))+aW(j)J
3

where

W( j) = Ep( j , f(j,a),k)V(k)
k

Letting a0 f(i—l,a), a1=f(i,a) and a2 =f(i+l,a) , we have

(17) U(i,m)—U(i,a) = r(iim)_r(is a)+a(p~
_p
~ )[r ’(ii a2)+r(i.a2

)_

— r(i,a1)+aW~i)] + a(qa~
qm ) [r ’ (i—l,a1)+r(i— l,a1)—r(i—l,a0)+aW’ (i—l))

We know that V. �0 , and so

W ’ (i) = Pa “~~
1
~~~~~~~~ a ~~a 

)V’ (i)+qa v’ (i—l)�O,
2 1 2 1
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since l—p —q � l—p1—q � 0. Similarly W’ (i—l) � 0. Note alsoa1 a2 m

that r(i,a2) �r(i ,a1) , for if not, then

U(i,a2)—U(i,a1)=r(i ,a2)—r(i,a1)+a.[(p —p )V’(i)+(q —q )V’(i—l)] >0a2 a1 a1 a2

which would contradict the optimality of a
1=f(i ,a) . Similarly,

r(i—l, a1) � r(i—l, a0
) . Using these observations in (17),  along

with

r’(i,a2)�r ’ (i—l ,a1)�r ’ (i—l ,m) ,

and (12), it follows that

U(i,m)—U(i,a) ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ (i—l,m) �0.

This proves (13). Condition (14) clearly implies (12) and hence

(13). 1

4. MonOtone Average Reward Policies for Random walks

If a Markov decision process has discounted optimal policies

with a special structure, then it is reasonable that there should

be an average optimal policy with the same structure. we shall

show that this is true for our random walk. We also present a

linear program for computing average optimal policies.

We begin with a result that is useful for obtaining a structured

average optimal policy from structured a—discounted optimal policies.

- i

- ~~-~~- -• •-—— ‘- — ——•
~~~~~~ •~~~-
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For this we let (X~.a~ ) be a controlled Markov chain as in Section

2. Let ri denote the set of all policies f under which the

a—discounted value function Vf(.’) is finite for all a in some

neighborhood of 1 , and the limit

1 n-l
q’f (’) = limn E~( ~ 

r(Xk,abJ JX fl=i)
• n-’~ k=0 ‘

~ ~
‘

exists for all ~~~~, where —
~~~ cp~ Ci) <~~~~. The following is an exten-

sion of Theorem 1 of Derman (1962).

~~~~~~
ition 4.1. (a) If f* is a policy in fl which is discounted

optimal for discount factors a1,a2,... where a~~-’l~ then

(1) cPf*(i) = sup cpf(i) for all i.
f E ll

(b) Suppose there is a subset t l*cf l  which contains an a—discounted

optimal policy for each a in some interval [B,1), and ~f(1) 
s — ~

for all f % TI . If 11* is a finite set, then it contains an average

optimal policy.

Proof. Suppose for now that r ~ 0. We first note that for any

f E ll,

(2) ~f(~ ) lim (l—a)Vf(i) for all i.

This follows by the well-known Tau ierian theorem [7, p.447] when

is finite. And it follows when ~ f t 1) ~~~~~~~~ since

~1

(3) (l—a)Vf(i) � (l—a)Ef(E a
kr(xk,ak) p X

O=i)

V

� V ’Ef (E a
kr(X k,ak

) I X
O=i) -~~pf

(i)=..~ as a-~1 ,

where v is the integer part of (l—a)~~



19

Now using (2) we have for any f E fl

~f(i) 
= lim (l_a)Vf(i)� lim(l—afl )Vf*(i) = cPf* (1)

This proves (1) for nonpositive •r • For the general case, let c

be an upper bound for r and consider the Markov decision process

with rewards ‘
~ (i ,a) = r ( i ,a)—c , transition probabilities p(i,a j )

and average rewards ~~~~~~. Since ~~ 0 and 
~~ 

~~~~~~~~ we have

cf*(1) = q~f~ (i)~Fc 
= sup ~P f ( ] ) + C  = SUP q~~(i)

f E l l  f E l l

This proves part ( a ) .  Part (b) follows from (a), since the

fini te set Il* must contain a policy which is a~—discounted optimal

for some a -.l. 
~

We are now ready to prove the following analogue of Theorem

3.1. A similar result holds for decreasing policies.

Theorem 4.2. Suppose the controlled random walk defined in Section 3

satisfies the following conditions.

(j) 
~a 

is decreasing and 
~a 

is increasing in a , and

(ii) r ’ (i,a) is nonpositive and increasing in a for each i.

(ii i)  r ’ (i,l) �r ’ (i+l,m) for each i

~ k(iv) E a m i n r ( k , a ) > — ~~.
k=O a

(v) q1 > 0 , p1 >0 , ~~~~~~ < 1 and r ’ (1, a) <0 for some i and a.

Thon there is an increasing average reward policy tor controlling

the random walk .

—
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Proof. We first establish the existence of average rewards. Let

f be any policy, and let

(4) = fl Pf ( k ) /cif (k+l) for i � 1,

and

N = iflf (i�0:Pf ( ~~) OJ

By the standard theory of random walks we have the following cases.

Case 1. The random walk under f is such that [O ,l,...,&J is a

closed class of positive recurrent states and [N+l,N+2,...J are

transient states if and only if E y. <~~ (When N=~ the latter set
1. 1

is empty.)

Case 2. The random walk under f has all transient or null recur-

rent states if and only if E Y 1=~~.

In Case 1 we know that

N
(5) ~f(i)  = r ( 0 , f ( O ) ) ~r f (O) + E r ( k ,f ( k ) ) Yk for all i ,

k= 1

where

( ‘yli (O) f o r i > l
(6) 1T

f
(1) = 

—

t (i+~~~~~v~~)~~ for i = 0

_ _ _ _  --— ~~~~~~~ --- -•- -  - - -~~~~ _ -  - • • - -—~~~~~~~~~~~~~~ • ~~~~~ - •- • -  _ _
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is the limiting distribution of the walk. Here ~~~~~~~~cP
f
< x . and

if N<~~ , then tlf ( i )  = y 1=O for i>N

In Case 2 we have ~Pf(~~) 
= —

~~~ for all i. To see this, let

v~~(n) denote the number of visits that the random walk makes to

state i in n steps. Conditions (ii) and (v) imply that r ( i ,a) ~ —~~~

as i ‘ ~ for each a. Then for any j > 1

—l n _1 j—l 1n E r(Xk,ak) 
= n E v.(n)r(i,f(i))+n E V .(n)r(i,f(i))

k=0 j=o 1 
~~=i 1

—l� B n  E v~~( n ) + r ( j ~~f ( j ) ) n E
i=0 i=j

• •= r ( j , f ( j ) ) + n  E v • ( n ) [B— l] ,
1

where B=maxr(O ,a). Since each i is transient or null recurrent,

• then n 1 (n) ~~0 a.s. it follows that

lim su p n
~~~

Ef (E r(Xk,ak)IX O=i) � r(j,f ( j) )
k—0

Letting j -~a yields q f (’) = — ~~ for all i.

We have just established the existence of cpf for each policy

f .  Also note that (i i)  and (iv) imply that

Vf (~~) � E a ’~ m i n r ( i+n , a) > — ~~ for any f , i, a and a .

Now let 11* denote the set of increasing a—discounted optimal policies

defined by (10) in Section 3 for 0 < a < 1. This set is nonempty

since (i)—(iii) are the assumptions of Theorem 3.1 which guarantee

the existence of such policies. It is also finite by Theorem 3.5.

Thus by Proposition 4.1 there is an increasing average optimal policy

in rI* •

L ~~~~~~~~~~~ • • • • • • • • • .  _ _ _ _ _  _ _ _ _ _ _  __
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In Theorem 4.2, we assumed (v) simply to eliminate some

degenerate cases. The q1>0 can be relaxed, but more details are

involved (cf.(4)). The p1>0 along with q1,O just rules out the

case in which p1 = ... = = 0 and each policy determines a walk that

is absorbed at zero. The Pm/cim <l eliminates the case in which

each •f determines a transient or null recurrent walk with

Here any policy is average optimal. Assumption (iv) insures that

Vf is finite—valued , which is needed to apply Proposition 4.1.

Clearly (ii) and minr(i,a) �g(i), where g is a polynomial,
a

imply (iv) .

The random walk we have been considering has an infinite state

space, and so we cannot compute optimal policies for it by the

standard procedures for finite state processes. Variations of these

• procedures do apply, however, in some cases as we shall now describe.

Consider a random walk, such as in Theorem 4.2, which has an

increasing average optimal policy f. We assume that q1 > 0 and

cim >Pm~ This insures that each policy determines a positive recur-

rent random walk. We also assume that f is constant, say equal

• to rn, on the states (M,M+ l,...J where M is known. This holds, for
• example, if r satisfies (12) or (14) in Theorem 3.5.

• Associated with this walk we let n= [TT(i,a) : i�l , l~~ a~~m,

ii (i,m)=l for i �MJ denote a randomized policy such that rt (i,a)

is the probability of selecting action a when the walk is in

__________ - --—~~~~~~~
•
~~~~~~~-~

---
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state i , and m is selected for all i�M. Under the policy i~~~.

the Markov chain (X~~a~) is positive recurrent. Letting

• v(i,a) = lim P,T (X
fl

i, a~=aIX0=j)

the average reward is

~ m
(7) cp = E E v(i,a)r(i,a)

‘
~ i=0 a=l

we can write

m
(8) v ( i ,a) = v(i) n (i,a) and v ( i )  = E v (i ,a) ,

a=l

where

v(i) 1im P~ (X~=iJ X0=j)n-.cD

Since 1T(i,m) = 1 for i �M, then by (6) it follows that

(9) v (i) = V CM) (P~/~~ ) 
1—M for i � M.

Consequently, expression (7) simplifies to

M-l m in
cp E v (i,a)r(i,a)-i-c(M) E

1=0 a=l a=l

where

(10) c(M) = E r(M+k,m) (p~/q~)k .

The problem of maximizing the cp~ over ,~ is clearly equivalent

to the following linear program :

• 
- - • . - . 

• — — • —.

_ __ _ _  • - ~~~~~~~~~ - -~~~~~~~~ - -~~~~~ -~~
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M-1 m in
max E ~ v( i,a)r(i,a)+c(M) E ‘u (M ,a)

v(i,a) i=0 a=l a=l

subject to

m m
• E v (0,a) = E [v (0,a)(l—q )+V (l,a)qa]a=1 a=l a

m m
•E v(),a) = E [v(j—l ,a)p +-v(j,a)(l—p _q~ )+v(i4~~~a)ci~]
a=l a=l a 

• 
a

for l~~j�M—l ,

m in
E V(M,a) = E [v(M—l,a)p  + v ( M ,a)(l—p —q )+v (M,a)(p /ci~)~ I

a=l a=l a a a m a

14-1 m
E E v( i,5)+ (l—p

~/q~
) E ~ (M, a) = 1

i=0 a=l a=].

0~� v ( 0 ,a)�... �v(M,a)�l for 1�a�m.

Note that the constraints imply that v(i,a) is the limi ting dis-

tribution of [(Xc. an)). An optimal solution v (i, a) of the lin ear

program, determines the increasing average optimal policy

m
u ( i ,a) = v(i,a)( E v(ii a)) 0�i�M l

a=l

rT(i,m) = 1 i�M.

This will be a nonrandom policy when v(i,a) is calculated by the

simplex algorithm. Note that the exceptionally nice limiting dis—

tribution (9) is the key property that allows us to reduce our

infinite variable optimization problem to a finite variable problem.

This cannot be done for most controlled Markov chains. Even if

_ _
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the M is not known for sure, the above linear program could be

run for a large 14 and for in equal to 1,2,..., and m . The best

of the resulting policies should be close to being average optimal

over all policies.

For some random walks with simple reward functions r(i,a) ,

such as polynomials in i, the average reward in (5) for a

monotone policy might be tractable enough to obtain an optimal

policy by policy improvement or by other ad hoc arguments. An

illustration of this is as follows.

Example 4.3. Consider a random walk with two possible actions that

-
• satisfies the following conditions.

(i) 0< q 1�q2, p1+ q 2�l, p 1>p 2 and p2 <l , where

(ii) r(i,a)=g(a)—hi ,where ( for s implicity) g(l)>g(2) and h>0.

Let

D = 

_n/ (1_ p1)+( p 1
_ p

2 ) (l_p~ )(l_ p1) 2 (l_ p2 ) + p 2 (g( l)— g(2 ) )h~~ (p 1
_ p 2 )~~

n if

_n2_n (l+p2
)(l_ p2 )~~

l+2p 2
(g( l )_ g(2) )h~

l(1_ p 2 )~~
l if p1=l ,

and

= min (n:D~~~ 0J

Then an average optimal policy is to select (p1,q1)

when the walk is below state n~’ and select (p2,q2) otherwise. 

________ ____  1
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To verify this assertion, let and rr~~(i) denote the

average reward and limiting distribution for the walk under the

policy of using (p1,q 1) when and only when the walk is below state

n. Then from (4)-(6) and some lengthy algebraic manipulations one

can show that

• ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ if p1~~ l

~n+l~~~n 1
~ 1/2 ~n 

(0) ‘Tn+l (0)hD~ if p1 = 1

and that D~ is strictly decreasing. This factorization implies that

has a global maximum at n*. This and Theorem 4 . 2  yield the assertion.

5. Random Walks with State Dependent Transitions

F We have been discussing a random walk whose step size is

determined by a pair 
~~~~~~~ 

of probabilities selected from a set

which is independent of the location of the walk. Results similar

to those in Sections 3 and 4 also hold for random walks whose set

of possible actions may depend on the location of the walk. We

illustrate this here by presenting analogues of Theorems 3.1 and

3 2 .  -

Cons ider a random walk on [0 , 1, .. . )  that moves as follows.

Upon arriving at a location i the following events Occur :

(a) A pair of probabilities (p(i,a) ,q(i ,a)) is selected from the

set [(p(i,l ) , q ( i,l)),...,(p(i,m),q(i m))).

(b) A reward r(i,a) is received.

(c) The next location of the walk is determined by the transition

probabilities

• p(i,a,i+l) = p(i ,a) , p( i ,a , i—l)  = q ( i , a )  , p(i ,a,i) = 1—p(i a)—q(i,a), 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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when i�1 , and

p(0,a,l) =p (0,a) and p(O,a,0) = l—p(O,a)

• This series of events is repeated indefinitely.

For the following result, we let

d (0, a)=—p(0 ,a) and d(i,a)= q(i,a)—p(i,a) for i�l .

Theorem 5.1. Suppose p(i,l) � . . .  �p(i ,m) , q(i,l) � ...

d’ (i,l)�...�d’(i,m), and p( i , a)+q(i4-l,a)�1 for each i and a.

(a) If r ’( i ,l)� ...�r’(i,m)~~ 0, r’(i,l)�r ’ (i-i- l,m),

d’ (i,l) ~ d’ (i+l ,m), and p(i+ 1,l ) + q ( i+ 2 ,m )— p ’ (i-i- l,m) �l for each

i , then there is an increasing a—discounted optimal policy for

controlling the random walk .

(b) If d ( i , a) is concave in i and r ( i , a) is convex and increasing

in i for each a; and for each i and a , r’(i, 1) k . . .  � r ’ (i , m) ,

E akmaxr (k a)<•,c, and p(i+l,a ) + q (i+ 2,a)—p ’ (i+ l,a) � l ,
k=0 a

then there is a decreasing a—discounted optimal policy for con—

trolling the random walk.

Proof. The assertions follow by arguments as used in proving

Theorems 3.1 and 3.2. The key idea is to use the following factoriza—

tions in the induction arguments (these are for i�l):

U1~(i,a) = r ’ (i,a)+a( [l—p(i,a)—q (i+l,a) ] V~ (i)+p ( i+l,a)V~ (i+l) +q ( i ,a)V~~(i—1

-- -~~— • - - —- ~~~~~~~~• — •- - - - •  --~~~~~_~~~~~~~~~~ •-~~~~~~~~~•-



-~ •- - --~ •--~ •- ~~ - -~~--•
• .~~~~~~~~~~~~~ --•-- 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ •— • •  —.-.

28

U~~(i+ l, m )—U ~~(i , 1) = r ’ (i+ l, m ) — r ’ (i , l )+ a (p ( i+ 2 , m)V~~( i+l)+ q( i , l ) V ” (j — l )

+ [l—p(i+ l, l)—q ( i+ 2 ,m)+p ’ (i+ l,m ) ]V ~~( i )+ ( d ’  (i ,l)—d’ (i÷ l,m)]v~ (i)J

and

U~ (i,a) =r ” ( i ,a)+a[p (i+2,a)v~ ( i+l)+q( i ,a)V~ (i—l)—d” (i,a)v’(j)

+ [l—p(i-i- l,a)—q(i+2,a)+p ’ (i+l,a) ]V ~ (i))

6. Controlled Birth and Death Processes

In this section we shall consider a controlled birth and death

process on the nonnegative integers that moves as follows. Upon

arriving at a state i , the following events occur .

(a) A pair of birth—death parameters 
~~a’~~a~ 

is selected from the

set [ ( X 1,i& 1) , . . . , (x  ,~~ ) )  where 
~l~~~’2~~~~” ~~X .~> O  and

We also assume ?
~m
<
~~m 

when considering average

optimal policies.

(b) The process remains in state i for a random time which has

an exponential distribution with par ameter

• ( p ,. if i = 0
) ( i , a) =~~ a

L 7
~a
+I’a if i~~~l .

Then the process jumps to a neighboring state according to the

transition probabilities q (0, a, 1) = 1 for i = 0, and

q(i,a,i+l) = Xa/(Xa+~a
) , and q(i,a,i—l) = ~~/(x +~~) for i ~ 1

I
___________ __________ ~~~~~~~~~~~~~~ ~~~~~~~~~
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(c) A cost is incurred at a rate c(a)+h(i) per unit time during

the sojourn in i , where h is convex and increasing. A nonnegative

reward R is also received for a birth (when the process jumps

from i to i+l). This series of events is repeated indefinitely.

We first show that this continuous time controlled birth and

death process is equivalent to a discrete time controlled random

walk. Then we use Theorems 3.1 and 4.2 to establish the existence

of increasing discounted and average optimal policies for the birth

and death process. We also discuss the MIMI I queue with controlled

arrival and service rates.

We begin by introducing some more notation. A policy f for

successively choosing the birth—death parameters is defined to be

a mapping from the state space [0,1,...) to the action space [l,...,mJ .

Each policy f , along with a rule for starting the process , deter-

mines a continuous time birth and death process whose birth—death

parameters in state i are () f (~~)l IL f ( ~~)) .  We let Y~ and T~ denote

the n—th state of the process, and the time at which the process

jumps to state Y~~, respectively. The discounted reward for the

process if given by

—~T
Wf(~ ) = Ef (E e  ‘~g8

(Y~,a~ )IX 0=i), where an =f(Yn)

~~>0 is a continuous time discount factor , and g~ (i,a) , the dis-

counted gain in a sojourn, is

—~T1 
T1

g~ (i ,a) = Ef(e R6(Y1, i+l)—~~ (c(a)+h (i) )e  B dt IY0=i , a0=a)

= a~~ 
—h +~~(i,a))

——-- — - • •---- • —•--•- •-- ••- - •--—•• •—- ---- --•--- -~~~• - ••— —---• —-- -• -------•-- — -- -~~~~~~~~ •— --— —.- •_ __••____~~~~_& _--•~~
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Here T1 is the exponential sojourn time in state 1 , the 6 Ci , j )  = 1

or 0 according as i=j  or i~~j ,  and a reward p received at time t

has a value pe~~t . Similarly, the average reward for the process
is

Nt
= lint inf t 1Ef( E g0(x 

,a ) X0=i)• t-~~ n=0

where Nt = Sup[n : T �t J  is the number of jumps in time t. A

policy f* is called a—discounted optimal if

Wf*(i) = SUP Wf (1) for all i ,

and f* is called average optimal if

= SUP $f
(l) for all 1.

f

The following result is a special case of the equivalence
between continuous and discrete time Markov decision processes in
Lippman (1975) and Serfozo (1979).

Theorem 6.1. Consider the birth and death process defined above,

and consider the random walk defined in Section 3 with

= and 
~a 

= 
~~ah/A~ 

where A = +

r(i,a) = 
~~~~~~~~~~~~ 

)/(B+A)

and a= A/(B+A) . A policy is B—discounted (average) optimal for

the birth and death process if and only if it is a—discounted (average)

Optimal for the random walk.

—• • — -p~ — — • • 
~~~~~

— •  —
~~~~~~

—
~~~~~~~
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Proof. Note that the transition probabilities and rewards of the

two processes are such that

• ( X ( i , a ) q ( i , a , j ) / A  if i~~~~jp(i,a, j )  =~~

l l — X ( i ,a)/A if i =j ,

and

r(i,a) = g~~(i.a)(B+X (i la))/(B+A)

Then from (16], it follows for any policy f that

Wf(~~) = Vf(~ ) and 4ff(1) 
= Acp

f(i) for all i.

This yields the assertion. 
~

We are now ready for our main result.

Theorem 6.2. There exist increasing B—discounted and average

optimal policies for controlling the birth and death process.

Proof. The random walk described in Theorem 6.1 clearly satisfies

the assumptions of Theorem 3.1. Here r ’ (i ,a) =—h ’ (i) (B+A)~~

Then there exists an increasing a—discounted optimal policy for the

random walk, and by Theorem 6.1 this policy is also B—optimal for

the birth and death process. Similarly, the existence of an

increasing average optimal policy follows by Theorems 4.2 and 6.1. 
~

We now return to the queueing example that we briefly dis-

cussed in Section 1.

Example. Consider an M IM I1 queue whose arrival and service rates

are controlled as follows. At each service completion or customer
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arrival, the number of customers in the sys tem is observed . Based

on this number, an arrival and service rate pair a’~~a~ 
is selected

from the set [ ( X iiIJ i)s•~~
•s(X m iI &m ) ) •  A cust c (a)  per unit time is

charged for using a’~~a~ ’ 
a cost h(i) is charged for holding i

customers in the system for one time unit, and a reward a is

received from each entering customer. Then under the assumptions

in Theorem 6.2 on the (X asi
~a
)’5 and costs, there exist increasing

B—discounted and average optimal policies for controlling the queue.

It is interesting to note that increasing policies may not be

optimal for this queueing process if its state space is finite. We

have found such examples for both discounted and average rewards,

also see [3]. The reason is that the rejection of customers arriving

to a full queue limits the holding cost, and so a service

and arrival rate that is optimal for a given state may not be

economical in a higher state to reduce the queue. Also note that

we have tacitly assumed that there is no cost for changing the arrival

and service rates. When such costs are involved, the analysis is

more complex. This problem has only been solved for the case when

the arrival rate is fixed and the service rate can be set at 0 or

at a fixed rate ~ > 0 ,  see Deb (1976).

We have been considering a birth and death process with a

special reward structure just for the sake of simplicity. Theorem

6.2, and an analogue for decreasing policies, also hold for processes

with more general rewards (as in Theorems 3.1 and 3.2), and with

state—dependent action spaces (as in Theorem 5.1, an example is in

[1]). Because of the equivalence in Theorem 6.1, the computation

- —-

~

- •‘ •

~

-

~
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of optimal policies for the birth and death process is the same as

that for random walks.
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